Планарная технология - определение. Что такое Планарная технология
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Планарная технология - определение

Литография (микроэлектроника); Литографическое оборудование; Фотолитографическая машина
  • Рисунок с описанием кристалла одной из микросхем Fairchild
  • ссылка=http://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US3025589}}</ref><br>а — исходная пластина; б — первое окисление; в — первая фотолитографическая обработка; г — создание базовой области и второе окисление; д — вторая фотолитографическая обработка; е — создание эмиттерной области и третье окисление; ж — третья фотолитографическая обработка; з — металлизация.<br>1 — полупроводник с электропроводностью n-типа; 2 — маскирующая плёнка диоксида кремния; 3 — область базы; 4 — область эмиттера; 5 — металлическая плёнка (электроды).
Найдено результатов: 103
Планарная технология         

планарный процесс (англ. planar, от лат. planus - плоский, ровный), первоначально - совокупность технологических операций, проводимых для получения полупроводниковых (ПП) приборов с электронно-дырочными переходами (См. Электронно-дырочный переход), границы которых выходят на одну и ту же плоскую поверхность ПП пластины и находятся под слоем защитного диэлектрического покрытия; в современном, более широком смысле - совокупность технологических операций, проводимых для получения практически любых ПП приборов и интегральных схем (См. Интегральная схема), в том числе и таких, у которых границы электронно-дырочных переходов не выходят на одну плоскую поверхность. Термины "П. т." и "планарный прибор" появились в 1959, когда американской фирмой "Фэрчайлд" (Fairchild) были созданы первые планарные кремниевые транзисторы.

Основные технологические операции при изготовлении классического планарного кремниевого транзистора с n-p-n-переходами выполняются в следующей последовательности. На отшлифованной, а затем отполированной, тщательно очищенной плоской поверхности пластины из монокристаллического кремния с электропроводностью n-типа (рис., а) термическим окислением в сухом или влажном кислороде создают слой двуокиси кремния (SiO2) толщиной от нескольких десятых до 1,0-1,5 мкм (рис., б). Далее производят фотолитографическую обработку этого слоя (см. Фотолитография): на окисленную поверхность кремния наносят слой Фоторезиста, чувствительного к ультрафиолетовому излучению; пластину с высушенным слоем фоторезиста помещают под шаблон - стеклянную пластину с рисунком, в заданных местах прозрачным для ультрафиолетового излучения; после обработки излучением фоторезист в тех местах, под которыми должен сохраняться слой SiO2, полимеризуют (задубливают), с остальной части пластины фоторезист снимают и удаляют травлением обнажившийся слой SiO2, после чего снимают оставшийся фоторезист (рис., в). Затем в участки, где нет плёнки окисла, проводят диффузию (См. Диффузия) бора (акцепторной примеси) для создания в материале исходной пластины (коллекторная область) базовой области с электропроводностью р-типа. Т. к. диффузия одновременно идёт и перпендикулярно поверхности пластины, и параллельно ей, т. е. под края окисной плёнки, то границы электронно-дырочного перехода между коллекторной и базовой областями, выходящие на поверхность пластины, оказываются закрытыми слоем SiO2 (рис., г). После проведения диффузии бора (или одновременно) поверхность пластины повторно подвергают окислению и повторно производят фотолитографическую обработку (рис., д) с целью создания эмиттерной области с электропроводностью n-типа диффузией фосфора (донорной примеси) в заданные участки базовой области. При этом границы электронно-дырочных переходов между эмиттерной и базовой областями оказываются также закрытыми слоем SiO2 (рис., е). После диффузии доноров или одновременно с ней проводят третье окисление и над эмиттерной областью создают слой чистой SiO2 или фосфорно-силикатного стекла. Затем производят последнюю фотолитографическую обработку и вытравливают над эмиттерной и базовой областями в плёнке окисла отверстия для контактов к этим областям (рис., ж). Контакты создают нанесением тонкой металлической плёнки (обычно Al; рис., з). Контакт к коллекторной области осуществляют путём металлизации нижней поверхности исходной пластины. Пластину кремния разрезают на отдельные кристаллы, каждый из которых имеет транзисторную структуру. Наконец, каждый кристалл помещают в корпус и герметизируют последний.

По мере своего развития П. т. включила в себя ряд новых процессов. В качестве материала защитных плёнок используют не только SiO2, но и нитрид кремния, оксинитрид кремния и др. вещества. Для их создания применяют пиролиз, реактивное (в кислородной среде) распыление кремния и др. процессы. Для селективного удаления защитной диэлектрической плёнки, помимо обычной оптической фотолитографии, применяется обработка электронным лучом (т. н. электронолитография). Для легирования кремния, кроме диффузии, используют Ионное внедрение донорных и акцепторных примесей. Получило распространение сочетание методов П. т. с технологией эпитаксиального выращивания (см. Эпитаксия). В результате такого сочетания создан широкий класс разнообразных планарно-эпитаксиальных ПП приборов. Появилась возможность получать стойкие защитные диэлектрические плёнки не только на кремнии, но и на других ПП материалах. В результате были созданы планарные ПП приборы на основе германия и арсенида галлия. В качестве легирующих примесей в П. т. используют не только бор и фосфор, но также др. элементы третьей и пятой групп периодической системы элементов Д. И. Менделеева.

Главное достоинство П. т., послужившее причиной её распространения в полупроводниковой электронике (См. Полупроводниковая электроника), заключается в возможности использования её как метода группового изготовления ПП приборов, что повышает производительность труда и процент выхода годных приборов, позволяет уменьшить разброс их параметров. Применение в П. т. таких прецизионных процессов, как фотолитография, диффузия, ионное внедрение, даёт возможность очень точно задавать размеры и свойства легируемых областей и в результате получать параметры и их сочетания, недостижимые при др. методах изготовления ПП приборов. Защитные диэлектрические плёнки, закрывающие выход электронно-дырочных переходов на поверхность ПП материала, позволяют создавать приборы со стабильными характеристиками, мало меняющимися во времени. Этому способствует также ряд специальных мер: поверхность пластин перед нанесением защитной плёнки тщательно очищают, при создании защитных плёнок используют особо чистые исходные вещества (например, бидистиллированную воду, которая после последней дистилляции не контактирует с внешней средой) и т.д.

Лит.: Кремниевые планарные транзисторы, под ред. Я. А. Федотова, М., 1973; Мазель Е. З., Пресс Ф. П., Планарная технология кремниевых приборов, М., 1974.

Е. З. Мазель.

Стадии изготовления планарного транзистора: а - исходная пластина; б - после первого окисления; в - после первой фотолитографической обработки; г - после создания базовой области и второго окисления; д - после второй фотолитографической обработки; е - после создания эмиттерной области и третьего окисления; ж - после третьей фотолитографической обработки; з - после металлизации; 1 - исходный кремний с электропроводностью n-типа; 2 - маскирующая плёнка двуокиси кремния; 3 - базовая область; 4 - эмиттерная область; 5 - металлическая плёнка (контакты).

ПЛАНАРНАЯ ТЕХНОЛОГИЯ         
(от англ. planar - плоский), высокопроизводительный метод группового изготовления полупроводниковых приборов и интегральных схем. Основные операции планарной технологии: создание тонкой диэлектрической пленки на поверхности кристаллического полупроводника (Si, Ge, GaAs); удаление способом фотолитографии или электронолитографии определенных участков этой пленки; введение в кристалл через незащищенные пленкой участки донорных или акцепторных примесей (легирование). В результате этих операций в кристалле образуются области с электронно-дырочными переходами.
Планарная технология         
Планарная технология — совокупность технологических операций, используемых при изготовлении планарных (плоских, поверхностных) полупроводниковых приборов и интегральных микросхем. Процесс включает в себя формирование отдельных компонентов транзисторов, а также объединение их в единую структуру. Это основной процесс при создании современных интегральных схем. Данная технология была разработана , одним из членов «вероломной восьмёрки», во время работы в Fairchild Semiconductor. Технология впервые была запатентована в 1959 году.
Стелс-технология         
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • корвет типа «Висбю»]]
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
ТЕХНОЛОГИЯ СНИЖЕНИЯ ЗАМЕТНОСТИ БОЕВЫХ МАШИН
Технология стелс; Малозаметность; Стелс (самолёт); Стелс (технология); Стелс-технологии; Технологии снижения заметности; Пассивные технологии снижения радиозаметности
Стелс (, также стелс-технология) — комплекс способов снижения заметности боевых машин в радиолокационном, инфракрасном и других областях спектра обнаружения посредством специально разработанных геометрических форм и использования радиопоглощающих материалов и покрытий, что заметно уменьшает радиус обнаружения и тем самым повышает выживаемость боевой машины. Технологии снижения заметности являются самостоятельным разделом военно-научной дисциплины электронных средств противодействия, охватывают диапазон техники и технологий изготовления вое
малозаметность         
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • корвет типа «Висбю»]]
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
ТЕХНОЛОГИЯ СНИЖЕНИЯ ЗАМЕТНОСТИ БОЕВЫХ МАШИН
Технология стелс; Малозаметность; Стелс (самолёт); Стелс (технология); Стелс-технологии; Технологии снижения заметности; Пассивные технологии снижения радиозаметности
ж.
Отвлеч. сущ. по знач. прил.: малозаметный.
МАССОВОЕ ПРОИЗВОДСТВО         
характеризуется непрерывностью изготовления в течение длительного периода одинаковой продукции (изделий, деталей, заготовок) при строгой повторяемости производственного процесса на участках, линиях и рабочих местах. Основано на поточном методе производства (его высшая форма - автоматическая линия).
Массовое производство         

один из типов организации производства, характеризующийся ограниченной номенклатурой однородной продукции, изготовляемой в больших количествах. М. п. представляет собой высшую форму специализации производства, позволяющую сосредоточивать на предприятии выпуск одного или нескольких типоразмеров одноимённых изделий или деталей этих изделий. М. п. характерно для многих отраслей промышленности: машиностроения (производство инструментов, крепёжных материалов, подшипников), приборостроения (производство часов), лёгкой промышленности (изготовление обуви, галантереи), пищевой промышленности (производство консервов). М. п. может быть организовано как в рамках отдельных цехов, их участков, так и предприятия в целом. М. п. обеспечивает, как правило, значительное увеличение объёма продукции при постоянном или улучшенном её качестве, рост производительности труда благодаря применению специальных оборудования и оснастки и сведения к минимуму подготовительно-заключительного времени на операции, снижение себестоимости и повышение рентабельности. Особенности М. п. отражаются в самом процессе производства и методах его осуществления, в специализации рабочих мест и их расположении в порядке следования операций. Технологический процесс в большинстве случаев прогрессивен и относительно постоянен. Квалификация рабочих при узкой специализации должна быть высокой. Технологические операции при М. п. синхронизируются, и движение предметов труда по рабочим местам происходит непрерывно, часто с применением механизированных транспортных средств (Конвейеров). Это обеспечивает минимальную продолжительность производственного цикла и как следствие - максимальную скорость оборота. При М. п. различные изделия выпускаются одновременно и, как правило, непрерывно. Условие этого - максимальная стандартизация и нормализация узлов и деталей при конструировании (см. Стандартизация).

При М. п. возрастают степень загрузки рабочих мест, механизация учёта и контроля, осуществляются непрерывная дистанционная Диспетчеризация производства, внедрение автоматизированных систем управления предприятием (АСУП).

Лит. см. при статье Организация производства.

ПИГМЕНТ         
  • Красящие вещества на прилавке рынка в [[Гоа]], Индия
1. окрашенное вещество в организме, участвующее в его жизнедеятельности и придающее цвет коже, волосам, чешуе, цветкам, листьям.
2. химический порошковый краситель.
ПОТОЧНОЕ ПРОИЗВОДСТВО         
метод организации производства, характеризующийся расчленением производственного процесса на отдельные, относительно короткие операции, выполняемые на специально оборудованных, последовательно расположенных рабочих местах - поточных линиях.
пигмент         
  • Красящие вещества на прилавке рынка в [[Гоа]], Индия
ПИГМ'ЕНТ, пигмента, ·муж. (·лат. pigmentum - краска, мазь) (физиол.). Красящее вещество в животном или растительном организме, придающее окраску ткани.

Википедия

Планарная технология

Планарная технология — совокупность технологических операций, используемых при изготовлении планарных (плоских, поверхностных) полупроводниковых приборов и интегральных микросхем. Процесс включает в себя формирование отдельных компонентов транзисторов, а также объединение их в единую структуру. Это основной процесс при создании современных интегральных схем. Данная технология была разработана Жаном Эрни, одним из членов «вероломной восьмёрки», во время работы в Fairchild Semiconductor. Технология впервые была запатентована в 1959 году.

Сутью концепции было рассмотрение схемы в проекции на плоскости, что позволяло использовать элементы фотографии, такие как негативные фотоплёнки при засвечивании светочувствительных реактивов. Последовательность таких фотопроекций позволила создавать на кремниевой подложке сочетания диоксида кремния (диэлектрик) и легированных участков (проводники). Применяя также металлизацию (для соединения элементов схемы) и концепцию изоляции элементов схемы p-n-переходами, предложенную Куртом Леговцом, исследователи в Fairchild смогли создать схему на одной кремниевой пластине («вафля»), изготовленной из монокристалического кремниевого слитка («буля»).

Процесс также включает в себя операции окисления кремния (SiO2), травления и диффузии.